Psychométrie

Propriétés Psychométriques du questionnaire ComColors

1

Analyse factorielle exploratoire

La validation psychométrique du questionnaire ComColors a été élaborée sous la direction d’un docteur en psychologie qui a appliqué les méthodologies psychométriques actuelles en utilisant les outils les plus récents à ce jour (2012).

La première étape a été de créer un questionnaire qui permette de réaliser une analyse factorielle exploratoire. Ce travail a consisté à mesurer les dimensions psychologiques des six types de personnalité du modèle ComColors. Pour réaliser ce travail, il a été nécessaire de créer une première série de questions que nous avons soumise à un groupe d’environ 130 personnes. Ainsi, nous avons pu distinguer les dimensions psychologiques fiables de celles qui ne donnaient pas lieu à des mesures de qualité. Nous avons renouvelé quatre fois cette opération pour réussir à obtenir une mesure claire des dimensions psychologiques mesurées.

Le Tableau à droite est le résultat de la dernière analyse factorielle exploratoire qui montre que conformément aux attentes les items d’une dimension (bleu par exemple) ne sont fortement saturés qu’avec un seul facteur et très faiblement avec les facteurs des autres dimensions.

A l’issue de cette dernière analyse factorielle exploratoire (AFE), nous avons entrepris une validation plus approfondie de la structure du questionnaire en réalisant une analyse factorielle confirmatoire (AFC) sur 352 participants. L’analyse factorielle confirmatoire est une technique statistique qui se situe dans le prolongement de l’analyse factorielle exploratoire. Le but de l’Analyse Factorielle Confirmatoire est de tester la solidité du modèle théorique que l’on a réussi à faire émerger dans l’analyse exploratoire. L’AFC est donc une étape beaucoup plus avancée dans la démarche de recherche que l’AFE.

Résultat de l’analyse en composante principale avec rotation varimax

Résultat de l’analyse en composante principale avec rotation varimax

2

Analyse factorielle confirmatoire

Le principe de l’analyse confirmatoire est de vérifier si le modèle théorique n’est pas différent du modèle observé. Afin de vérifier cette absence de différence, des indicateurs sont calculés afin de mesurer la qualité de l’ajustement entre le modèle théorique et le modèle observé.

Le premier indicateur à prendre en compte est le χ2 car il permet de calculer  l’existence  d’un  écart  entre  la  matrice  de covariance observée et la matrice de covariance estimée. Si l’idéal est d’accepter l’hypothèse nulle ce test pose problème car il est dépendant de l’effectif de l’échantillon et du nombre de paramètres du modèle testé. Pour éviter ces distorsions, l’interprétation de différents indicateurs vise à obtenir une meilleure estimation de la qualité de l’ajustement. Dans cette recherche nous avons retenu un certain nombre d’indicateurs d’ajustement qui sont communément admis pour vérifier la qualité du modèle observé.

Le CFI  (Comparative Fit Index) et le TLI (Tucker-Lewis Index) sont des indicateurs qui sont basés sur l’écart au modèle d’indépendance. Ces indicateurs examinent la différence entre le chi2 du modèle testé et le chi2 du modèle théorique. Leur valeur peut varier théoriquement de 0 à 1. On considère qu’ils indiquent un bon ajustement à partir de valeurs de l’ordre de .90.

Le  RMSEA (Root Mean Square Error of Approximation) permet d’évaluer les écarts normalisés entre la matrice observée et la matrice estimée. Les auteurs considèrent qu’une valeur égale ou inférieure à .06 est le gage d’un bon ajustement.

Une dernière catégorie d’indicateur se focalise sur la variance expliquée. Le SRMR standardisé (Standardized Root Mean Residual) est  la  racine  carrée  de  la  moyenne  de  la somme des carrés des résidus de chaque cellule de la matrice. Les auteurs considèrent qu’une valeur égale ou inférieure à .05 est le signe d’un bon ajustement.

Le GFI (« Goodness of Fit Index ») permet de prendre en compte la variance  de  la  matrice  observée  sur laquelle s’appuie  le  modèle.  Cet indicateur varie théoriquement entre 0 et 1, avec une valeur des ajustements au moins égale à .90.

Indicateurs χ2 p df  RMSEA  GFI  TLI CFI SRMR
Modèle COMCOLORS 467.2 <.001 259 .059 .91 .92 .93 .048

Comme nous pouvons le constater sur le tableau ci-dessus tous les indicateurs d’ajustement atteignent et généralement dépassent les seuils recommandés, il est donc justifié de dire que le modèle ComColors s’ajuste correctement aux données et il peut donc être considéré comme valide d’un point de vue structurel.

Modèle structural

Modèle structural

3

Stabilité temporelle de l’échelle ComColors

La stabilité est un critère de fidélité qui permet d’apprécier si une échelle reste fiable dans le temps. L’indicateur statistique qui permet de mesurer la stabilité est la corrélation. Pour être considérées comme stables les réponses d’une même personne doivent être les mêmes quand elle répond deux fois aux mêmes questions. Si elle ne répond pas de manière stable cela veut dire que la mesure de l’échelle est trop éphémère pour être utilisée. Le seuil admis en matière de stabilité est de .70. Globalement les items de l’échelle doivent atteindre ou dépasser ce seuil.

Les corrélation test/retest pour l’ensemble des couleurs sont les suivantes :

Rouge Orange Violet Bleu Vert Jaune
.74 .79 .70 .74 .75 .72

Ces corrélations sont toutes supérieures à .70 qui est le seuil recommandé permettant d’estimer si une échelle est stable, il est donc possible de conclure que toutes les couleurs du modèle ComColors présentent un coéfficient de stabilité tout à fait acceptable.

La validation psychométrique du questionnaire ComColors a été réalisé par Fabien Fenouillet, Docteur en psychologie, Enseignant chercheur à l’université de Paris-ouest Nanterre et également spécialiste de la motivation.